首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8670篇
  免费   1344篇
  国内免费   1424篇
化学   6848篇
晶体学   73篇
力学   450篇
综合类   105篇
数学   994篇
物理学   2968篇
  2024年   9篇
  2023年   162篇
  2022年   176篇
  2021年   197篇
  2020年   326篇
  2019年   311篇
  2018年   240篇
  2017年   270篇
  2016年   381篇
  2015年   401篇
  2014年   492篇
  2013年   661篇
  2012年   785篇
  2011年   799篇
  2010年   625篇
  2009年   610篇
  2008年   652篇
  2007年   592篇
  2006年   528篇
  2005年   473篇
  2004年   395篇
  2003年   391篇
  2002年   335篇
  2001年   271篇
  2000年   210篇
  1999年   175篇
  1998年   132篇
  1997年   118篇
  1996年   148篇
  1995年   110篇
  1994年   83篇
  1993年   66篇
  1992年   68篇
  1991年   63篇
  1990年   41篇
  1989年   25篇
  1988年   23篇
  1987年   19篇
  1986年   19篇
  1985年   12篇
  1984年   6篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1979年   4篇
  1968年   1篇
  1959年   1篇
  1940年   1篇
  1902年   1篇
  1898年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
For the first time, electrospun composite nanofibers comprising polymeric crown ether with polystyrene (PCE‐PS) have been used for the selective extraction of catecholamines – dopamine (DA), norepinephrine (NE) and epinephrine (E) – prior to their analysis by high‐performance liquid chromatography–electrochemical detection. Using a minicartridge packed with PCE‐PS composite nanofibers, the target compounds were extracted effectively from urine samples to which diphenylborinic acid 2‐aminoethyl ester was added as a complexing reagent. The extracted catecholamines could be liberated from the fiber by the addition of acetic acid. A good linearity was observed for catecholamines in the range of 2.0–200 ng mL?1 (NE, E and DA). The detection limits of catecholamines (signal‐to‐noise ratio = 3) were 0.5 ng mL?1 (NE), 0.2 ng mL?1 (E) and 0.2 ng mL?1 (DA), respectively. Under the optimized conditions, the absolute recoveries of the above three catecholamines were 90.6% (NE), 88.5% (E) and 94.5% (DA). The repeatability of extraction performance was from 5.4 to 9.2% (expressed as relative standard deviation). Our results indicate that the proposed method could be used for the determination of NE, E and DA in urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
32.
A facile liquid‐phase exfoliation method to prepare few‐layer FeOCl nanosheets in acetonitrile by ultrasonication is reported. The detailed exfoliation mechanism and generated products were investigated by combining first‐principle calculations and experimental approaches. The similar cleavage energies of FeOCl (340 mJ m?2) and graphite (320 mJ m?2) confirm the experimental exfoliation feasibility. As a Fenton reagent, FeOCl nanosheets showed outstanding properties in the catalytic degradation of phenol in water at room temperature, under neutral pH conditions, and with sunlight irradiation. Apart from the increased surface area of the nanosheets, the surface state change of the nanosheets also plays a key role in improving the catalytic performance. The changes of charge density, density of states (DOS), and valence state of Fe atoms in the exfoliated FeOCl nanosheets versus plates illustrated that surface atomistic relationships made the few‐layer nanosheets higher activity, indicating the exfoliation process of the FeOCl nanosheets also brought about surface state changes.  相似文献   
33.
34.
35.
Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes ( Re1 and Re2 ), along with their corresponding dinuclear complexes ( Re3 and Re4 ), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1–Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase‐independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase‐independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes.  相似文献   
36.
37.
A copper‐catalyzed difunctionalizing trifluoromethylation of activated alkynes with the cheap reagent sodium trifluoromethanesulfinate (NaSO2CF3 or Langlois’ reagent) has been developed incorporating a tandem cyclization/dearomatization process. This strategy affords a straightforward route to synthesis of 3‐(trifluoromethyl)‐spiro[4.5]trienones, and presents an example of difunctionalization of alkynes for simultaneous formation of two carbon–carbon single bonds and one carbon–oxygen double bond.  相似文献   
38.
Herein, to mimic complex natural system, polyelectrolyte multilayer (PEM)‐coated mesoporous silica nanoreactors were used to compartmentalize two different artificial enzymes. PEMs coated on the surface of mesoporous silica could serve as a permeable membrane to control the flow of molecules. When assembling hemin on the surface of mesoporous silica, the hemin‐based mesoporous silica system possessed remarkable peroxidase‐like activity, especially at physiological pH, and could be recycled more easily than traditional graphene–hemin nanocompounds. The hope is that these new findings may pave the way for exploring novel nanoreactors to achieve compartmentalization of nanozymes and applying artificial cascade catalytic systems to mimic cell organelles or important biochemical transformations  相似文献   
39.
From the implementation point of view, the printable magnetic Janus colloidal photonic crystals (CPCs) microspheres are highly desirable. Herein, we developed a dispensing-printing strategy for magnetic Janus CPCs display via a microfluidics-automatic printing system. Monodisperse core/shell colloidal particles and magnetic Fe3O4 nanoparticles precursor serve as inks. Based on the equilibrium of three-phase interfacial tensions, Janus structure is successfully formed, followed by UV irradiation and self-assembly of colloid particle to generate magnetic Janus CPCs microspheres. Notably, this method shows distinct superiority with highly uniform Janus CPCs structure, where the TMPTA/Fe3O4 hemisphere is in the bottom side while CPCs hemisphere is in the top side. Thus, by using Janus CPCs microspheres with two different structural colors as pixel points, a pattern with red flower and green leaf is achieved. Moreover, 1D linear Janus CPCs pattern encapsulated by hydrogel is also fabricated. Both the color and the shape can be changed under the traction of magnets, showing great potentials in flexible smart displays. We believe this work not only offers a new feasible pathway to construct magnetic Janus CPCs patterns by a dispensing-printable fashion, but also provides new opportunities for flexible and smart displays.  相似文献   
40.
Perovskite is a promising non-noble catalyst and has been widely investigated for the electrochemical oxygen evolution reaction (OER). However, there is still serious lack of valid approaches to further enhance their catalytic performance. Herein, we propose a spin state modulation strategy to improve the OER electrocatalytic activity of typical perovskite material of LaCoO3. Specifically, the electronic configuration transition was realized by a simple high temperature thermal reduction process. M-H hysteresis loop results reveal that the reduction treatment can produce more unpaired electrons in 3d orbit by promoting the electron transitions of Co from low spin state to high spin state, and thus lead to the increase of the spin polarization. Electrochemical measurements show that the catalytic performance of LaCoO3 is strongly dependent on its electronic configuration. With the optimized reduction treatment, the overpotential for the OER process in 0.5 M KOH electrolyte solution at 10 mA cm−2 current density was 396 mV, significantly lower than that of the original state. Furthermore, it can mediate efficient OER with an overpotential of 383 mV under an external magnetic field, which is attributed to the appropriate electron filling. Our results show that electron spin state regulation is a new way to boost the OER electrocatalytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号